2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation.

نویسندگان

  • C R Roe
  • D S Millington
  • D L Norwood
  • N Kodo
  • H Sprecher
  • B S Mohammed
  • M Nada
  • H Schulz
  • R McVie
چکیده

Several inherited disorders of fatty acid beta-oxidation have been described that relate mainly to saturated precursors. This study is the first report of an enzyme defect related only to unsaturated fatty acid oxidation and provides the first in vivo evidence that fat oxidation in humans proceeds by the reductase-dependent pathway. The patient was a black female, presenting in the neonatal period with persistent hypotonia. Biochemical studies revealed hyperlysinemia, hypocarnitinemia, normal organic acid profile, and an unusual acylcarnitine species in both urine and blood. The new metabolite was positively identified by mass spectrometry as 2-trans,4-cis-decadienoylcarnitine, derived from incomplete oxidation of linoleic acid. In spite of dietary therapy, the patient died of respiratory acidosis at four months of age. Samples of liver and muscle from the autopsy were assayed for 2,4-dienoyl-coenzyme A reductase activity. Using the substrate 2-trans,4-cis-decadienoylcoenzyme A, the reductase activity was 40% of the control value in liver and only 17% of that found in normal muscle. It is suggested that unsaturated substrates should be used for in vitro testing to cover the full range of potential beta-oxidation defects and that acylcarnitine species identification be used for in vivo detection of this disorder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial 2,4-dienoyl-CoA Reductase Deficiency in Mice Results in Severe Hypoglycemia with Stress Intolerance and Unimpaired Ketogenesis

The mitochondrial beta-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids, we created a DECR-deficient mouse line. In Decr(-/-) mice, the mitoch...

متن کامل

Isolation and characterization of cDNA for human 120 kDa mitochondrial 2,4-dienoyl-coenzyme A reductase.

2,4-Dienoyl-CoA reductase (EC 1.3.1.34) participates in beta-oxidation of (poly)unsaturated enoyl-CoAs and it appears in mammalian mitochondria as two isoforms with molecular masses of 120 and 60 kDa [Hakkola and Hiltunen (1993) Eur. J. Biochem. 215, 199-204]. The 120 kDa isomer is a homotetrameric enzyme, and here we report cDNA cloning of its subunit from human. cDNA clones were isolated by r...

متن کامل

Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.

The beta-oxidation of saturated fatty acids in Saccharomyces cerevisiae is confined exclusively to the peroxisomal compartment of the cell. Processing of mono- and polyunsaturated fatty acids with the double bond at an even position requires, in addition to the basic beta-oxidation machinery, the contribution of the NADPH-dependent enzyme 2,4-dienoyl-CoA reductase. Here we show by biochemical c...

متن کامل

Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia.

Dienoyl-CoA reductase (DECR) deficiency with hyperlysinemia is a rare disorder affecting the metabolism of polyunsaturated fatty acids and lysine. The molecular basis of this condition is currently unknown. We describe a new case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy suggestive of a mitochondrial disorder. Exome sequencing revealed a causal mutat...

متن کامل

NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms.

The mitochondrial metabolism of 5-enoyl-CoAs, which are formed during the beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms, was studied with mitochondrial extracts and purified enzymes of beta-oxidation. Metabolites were identified spectrophotometrically and by high performance liquid chromatography. 5-cis-Octenoyl-CoA, a putative metabolite o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 85 5  شماره 

صفحات  -

تاریخ انتشار 1990